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Problem: Representation of Wire Bundles

<al0,al,a2>

<b0,b1,b2>

s2 <s0,s1,s2>

Choices: Lists, Arrays, Tuples
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Pros and Cons of Bundle Representations

List Array Tuple
flexible length v v
type-safe length v
iInhomogeneous v
efficiency ? v

- use Template Haskell to make tuples flexible!

Christoph Herrmann, University of Passau
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Template Haskell, Properties

» Homogeneous, two-level
» Manually annotated
» Static (compile-time) generation

» Lexical scoping
e gutomatic renaming of local variables
®Cross-stage persistence

» Type safety of generated program

» Observability
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Template Haskell, High-Level Annotations

Quasi-Quotation
» encloses part of object program
» syntax: \X -> X*X

» typechecked after construction of quoted part is complete

Splicing
* inserts code stored in meta variable in object part
» syntax: [| \dynarg -> (fcode statarg) dynarg |]

» evaluated when code for quasi-quotation is constructed
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Template Haskell, Simple Low-Level Example

Metaprogram
sel :: Int ->1Int -> Q Exp
sel I n =
do
let as = [ nmkName ("a" ++ show j)
| J<-[1..n] ]

pat = TupP (map VarP as)
return (Lanmk [pat] (VarE (as!!(i-1))))

Use in Application ..+ (sel56)x-...

\

Generated Function (\(al, a2, a3, a4, a5, a6) -> ab)
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Big Picture

DSL language designer

Skeleton
Specification

Small

Designs

Circuit

Library
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Main Skeletons

e Design Composition (parallel,sequential)
» parameters: degree, arity, component design
» parallel: components are independent
» sequential: components are connected linearly

* wires are connected to bundles (tuples)

e Wiring Patterns
» given: 2D-index transformation function (Haskell)

» output: mapping between bundles of wire bundles
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Parallel Composition Example

» parameters: degree=3, arity=3, component=(\i-> c i)
» corresponding ports are bundled in the composition

* component outports can be bundles themselves
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Sequential Composition Example

» parameters: degree=3, arity=2, component=(\i-> c i)
* components are connected by their first ports

» other ports are bundled elementwise

m % [

i<
i<
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Example Design (1): n-bit Increment and Adder

wor dl nc, wordAdder :: Int -> Q Exp
wor dl nc n =
nmSeqg n 1 (const (\ [[c,x ]] ->
[| hal f Adder ( $c, $x ) 1))
wor dAdder n =
nmSeq n 2 (const (\ c,X,y]] ->
[ | |

[
full d er ($c, $x, $y) 1))
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Example Design (1b): Splice

wor dAdder n =

mSeq n 2 (const (\ , X, v]] ->
[ |

|
ul | Adder ($ , $x, $y) |1))

=—h

$(wor dAdder 3) ======>
\ ~(,(x0. 0, xO0 1, x0 2),(x1 0, x1 1, x1 2))
-> | et
~(, y0) = full Adder ( , x0_0, x1_0)
~( , y1) = full Adder ( , x0_1, x1 1)
~(, y2) = fullAdder ( , x0_2, x1 2)

in (-, (y0, yl1, y2))
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Example Design (2): n-bit Multiplexer

multiplex :: Int -> Q Exp
mul tiplex n =
[ \ ( , XS, YS)
-> $(skelPar n 2 ( \_ [[x,y]] ->
[ mux( ,$x,$y) 11))

(xs,ys) |]
S(multiplex 3) ======>
\ 1 XS,YS)
-> \ ~((x0,x1,x2),(x3,x4,x5))
-> let
~X6 = mux ( , X0,x3)
~X7 = mux ( , X1 ,x4)
~xXx8 = mux ( y X2 ,X5)
in (x6,x7,x8)
(XS, Vys)
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Example Design (3): mXxn-bit Sequential Multiplier

seqMultiplier m n =
[| \ (zero,one,init,step,operandl,operand2)

-> let (XLSB, ) = (init,step,zero,$(wRev m) operandl)
yReg = (init,operand?)
maskedY = (\_ [[yil] -> [| and2(xLSB,$yi) |]) yReg
newz = (\ _ [[zi]] ->
[| and2(notl(init),$zi) |]1) tmpRes
zReg = (step,new?)
(zL,zH) = $(wSplit m n) zReg
(cy,sumN) = (zero,maskedY, zH)
tmpRes = $(skelWire [m-1,n,1] (\ [_:1,h,c]->[1++h++c]))

(zL, sumN, cy)
initCount = $(skelWire [2] (\[[z,e]] -> [(z:replicate (m-1) e)]))
(one, zero)
(ready, ) = (init,step,zero,initCount)
resultReg = (ready, tmpRes)
in (flipflop(step,ready),resultReq)
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Index Transformations (1)

» Specification: composition of wiring Functions
» Implementation: single function

» Solution
eexpress wiring functionsas[[I nt]]->[[I nt]]
e compose them by Haskell composition
e calculate their effect on static indices
e generate function which establishes this effect
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Index Transformations (2), Examples

e Split an (m+n) bundle into parts of sizes m and n

(zL,zH) = $(wSplit m n) 2zReg

e Shift function on bundles of sizes (m-1), n, and 1

tmpRes = S(skelWire [m-1,n,1]
(\ [_:1,h,c]->[1++h++c]))
(zL,sumN, cy)
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Conclusions, from the User's Point of View

Available
» optional tool, compatible with hand-written designs

» features by parameterization
®32 or 64 bit wordsize?
®ehow many registers?
emultiplier: how many bits in parallel?

Still to be done:
» domain-specific syntax and error messages

» netlist generation
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Conclusions, from the Implementer's Perspective

Benefits from the expressive comfort in Haskell
» compositionality (ex. wiring functions)
» lexical scoping (ex. multiplexer)

Similar to dependent types, without loss of
» decidability of type inference
» programming comfort (restrictions are local,
Imposed by skeletons)

Parameterization without
» need for extreme mathematical efforts
» large case distinctions in the code

Yet another example for the benefit of
skeletons, especially if they are generated
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Thank You for Your Attention!

Questions ?

Project page

http://www.infosun.fmi.uni-passau.de/cl/metaprog/
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