Generating Size-Parameterized Functions for
Circuit Simulation Using Template Haskell

Christoph Herrmann
University of Passau

Talk at the IFIP-WG 2.11 Meeting
Dagstuhl, January 2006

Christoph Herrmann, University of Passau Talk at IFIP WG 2.11 Meeting, Dagstuhl, J

anuary 2006

Overview

* Problem

» Template Haskell

» Big Picture

» Main Skeletons

» Example Circuit Designs
* Index Transformations

» Conclusions

Christoph Herrmann, University of Passau Talk at IFIP WG 2.11 Meeting, Dagstuhl, January 2006

Problem: Representation of Wire Bundles

<al0,al,a2>

<b0,b1,b2>

s2 <s0,s1,s2>

Choices: Lists, Arrays, Tuples

Christoph Herrmann, University of Passau Talk at IFIP WG 2.11 Meeting, Dagstuhl, January 2006

Pros and Cons of Bundle Representations

List Array Tuple
flexible length v v
type-safe length v
iInhomogeneous v
efficiency ? v

- use Template Haskell to make tuples flexible!

Christoph Herrmann, University of Passau

e |U
“=&L(P

Talk at IFIP WG 2.11 Meeting, Dagstuhl, January 2006

Overview

* Problem

» Template Haskell

» Big Picture

» Main Skeletons

» Example Circuit Designs
» Index Transformations

» Conclusions

Christoph Herrmann, University of Passau Talk at IFIP WG 2.11 Meeting, Dagstuhl, January 2006

Template Haskell, Properties

» Homogeneous, two-level
» Manually annotated
» Static (compile-time) generation

» Lexical scoping
e gutomatic renaming of local variables
®Cross-stage persistence

» Type safety of generated program

» Observability

Christoph Herrmann, University of Passau Talk at IFIP WG 2.11 Meeting, Dagstuhl, January 2006

Template Haskell, High-Level Annotations

Quasi-Quotation
» encloses part of object program
» syntax: \X -> X*X

» typechecked after construction of quoted part is complete

Splicing
* inserts code stored in meta variable in object part
» syntax: [| \dynarg -> (fcode statarg) dynarg |]

» evaluated when code for quasi-quotation is constructed

Christoph Herrmann, University of Passau Talk at IFIP WG 2.11 Meeting, Dagstuhl, January 2006

Template Haskell, Simple Low-Level Example

Metaprogram
sel :: Int ->1Int -> Q Exp
sel I n =
do
let as = [nmkName ("a" ++ show j)
| J<-[1..n]]

pat = TupP (map VarP as)
return (Lanmk [pat] (VarE (as!!(i-1))))

Use in Application ..+ (sel56)x-...

\

Generated Function (\(al, a2, a3, a4, a5, a6) -> ab)

Christoph Herrmann, University of Passau 8 Talk at IFIP WG 2.11 Meeting, Dagstuhl, January 2006

Overview

* Problem

» Template Haskell

* Big Picture

» Main Skeletons

» Example Circuit Designs
» Index Transformations

» Conclusions

Christoph Herrmann, University of Passau Talk at IFIP WG 2.11 Meeting, Dagstuhl, January 2006

Big Picture

DSL language designer

Skeleton
Specification

Small

Designs

Circuit

Library

Christoph Herrmann, University of Passau

* automatic

Skele’;on Parameters
Function

circuit designer

Talk at IFIP WG 2.11 Meeting, Dagstuhl, January 2006

Overview

* Problem

» Template Haskell

» Big Picture

* Main Skeletons

» Example Circuit Designs
» Index Transformations

» Conclusions

11

Christoph Herrmann, University of Passau Talk at IFIP WG 2.11 Meeting, Dagstuhl, January 2006

Main Skeletons

e Design Composition (parallel,sequential)
» parameters: degree, arity, component design
» parallel: components are independent
» sequential: components are connected linearly

* wires are connected to bundles (tuples)

e Wiring Patterns
» given: 2D-index transformation function (Haskell)

» output: mapping between bundles of wire bundles

12

Christoph Herrmann, University of Passau Talk at IFIP WG 2.11 Meeting, Dagstuhl, January 2006

\
\-
r\,
=L

Parallel Composition Example

» parameters: degree=3, arity=3, component=(\i-> c i)
» corresponding ports are bundled in the composition

* component outports can be bundles themselves

13

Christoph Herrmann, University of Passau Talk at IFIP WG 2.11 Meeting, Dagstuhl, January 2006

Sequential Composition Example

» parameters: degree=3, arity=2, component=(\i-> c i)
* components are connected by their first ports

» other ports are bundled elementwise

m % [

i<
i<

14

Christoph Herrmann, University of Passau Talk at IFIP WG 2.11 Meeting, Dagstuhl, January 2006

Overview

* Problem

» Template Haskell

» Big Picture

» Main Skeletons

» Example Circuit Designs
» Index Transformations

» Conclusions

15

Christoph Herrmann, University of Passau Talk at IFIP WG 2.11 Meeting, Dagstuhl, January 2006

Example Design (1): n-bit Increment and Adder

wor dl nc, wordAdder :: Int -> Q Exp
wor dl nc n =
nmSeqg n 1 (const (\ [[c,x]] ->
[| hal f Adder ($c, $x) 1))
wor dAdder n =
nmSeq n 2 (const (\ c,X,y]] ->
[| |

[
full d er ($c, $x, $y) 1))

16

Christoph Herrmann, University of Passau Talk at IFIP WG 2.11 Meeting, Dagstuhl, January 2006

Example Design (1b): Splice

wor dAdder n =

mSeq n 2 (const (\ , X, v]] ->
[|

|
ul | Adder ($, $x, $y) |1))

=—h

$(wor dAdder 3) ======>
\ ~(,(x0. 0, xO0 1, x0 2),(x1 0, x1 1, x1 2))
-> | et
~(, y0) = full Adder (, x0_0, x1_0)
~(, y1) = full Adder (, x0_1, x1 1)
~(, y2) = fullAdder (, x0_2, x1 2)

in (-, (y0, yl1, y2))

17

Christoph Herrmann, University of Passau Talk at IFIP WG 2.11 Meeting, Dagstuhl, January 2006

L u
“=TL(P

Example Design (2): n-bit Multiplexer

multiplex :: Int -> Q Exp
mul tiplex n =
[\ (, XS, YS)
-> $(skelPar n 2 (_ [[x,y]] ->
[mux(,$x,$y) 11))

(xs,ys) |]
S(multiplex 3) ======>
\ 1 XS,YS)
-> \ ~((x0,x1,x2),(x3,x4,x5))
-> let
~X6 = mux (, X0,x3)
~X7 = mux (, X1 ,x4)
~xXx8 = mux (y X2 ,X5)
in (x6,x7,x8)
(XS, Vys)

18

Christoph Herrmann, University of Passau Talk at IFIP WG 2.11 Meeting, Dagstuhl, January 2006

Example Design (3): mXxn-bit Sequential Multiplier

seqMultiplier m n =
[| \ (zero,one,init,step,operandl,operand2)

-> let (XLSB,) = (init,step,zero,$(wRev m) operandl)
yReg = (init,operand?)
maskedY = (_ [[yil] -> [| and2(xLSB,$yi) |]) yReg
newz = (\ _ [[zi]] ->
[| and2(notl(init),$zi) |]1) tmpRes
zReg = (step,new?)
(zL,zH) = $(wSplit m n) zReg
(cy,sumN) = (zero,maskedY, zH)
tmpRes = $(skelWire [m-1,n,1] (\ [_:1,h,c]->[1++h++c]))

(zL, sumN, cy)
initCount = $(skelWire [2] (\[[z,e]] -> [(z:replicate (m-1) e)]))
(one, zero)
(ready,) = (init,step,zero,initCount)
resultReg = (ready, tmpRes)
in (flipflop(step,ready),resultReq)

19

Christoph Herrmann, University of Passau Talk at IFIP WG 2.11 Meeting, Dagstuhl, January 2006

Overview

* Problem

» Template Haskell

» Big Picture

» Main Skeletons

» Example Circuit Designs
* Index Transformations

» Conclusions

20

Christoph Herrmann, University of Passau Talk at IFIP WG 2.11 Meeting, Dagstuhl, January 2006

Index Transformations (1)

» Specification: composition of wiring Functions
» Implementation: single function

» Solution
eexpress wiring functionsas[[I nt]]->[[I nt]]
e compose them by Haskell composition
e calculate their effect on static indices
e generate function which establishes this effect

21

Christoph Herrmann, University of Passau Talk at IFIP WG 2.11 Meeting, Dagstuhl, January 2006

=/ (G
Index Transformations (2), Examples

e Split an (m+n) bundle into parts of sizes m and n

(zL,zH) = $(wSplit m n) 2zReg

e Shift function on bundles of sizes (m-1), n, and 1

tmpRes = S(skelWire [m-1,n,1]
(\ [_:1,h,c]->[1++h++c]))
(zL,sumN, cy)

22

Christoph Herrmann, University of Passau Talk at IFIP WG 2.11 Meeting, Dagstuhl, January 2006

Overview

* Problem

» Template Haskell

» Big Picture

» Main Skeletons

» Example Circuit Designs
* Index Transformations

e Conclusions

23

Christoph Herrmann, University of Passau Talk at IFIP WG 2.11 Meeting, Dagstuhl, January 2006

Conclusions, from the User's Point of View

Available
» optional tool, compatible with hand-written designs

» features by parameterization
®32 or 64 bit wordsize?
®ehow many registers?
emultiplier: how many bits in parallel?

Still to be done:
» domain-specific syntax and error messages

» netlist generation

24

Christoph Herrmann, University of Passau Talk at IFIP WG 2.11 Meeting, Dagstuhl, January 2006

Conclusions, from the Implementer's Perspective

Benefits from the expressive comfort in Haskell
» compositionality (ex. wiring functions)
» lexical scoping (ex. multiplexer)

Similar to dependent types, without loss of
» decidability of type inference
» programming comfort (restrictions are local,
Imposed by skeletons)

Parameterization without
» need for extreme mathematical efforts
» large case distinctions in the code

Yet another example for the benefit of
skeletons, especially if they are generated

25

Christoph Herrmann, University of Passau Talk at IFIP WG 2.11 Meeting, Dagstuhl, January 2006

LA
“=TL(P

Thank You for Your Attention!

Questions ?

Project page

http://www.infosun.fmi.uni-passau.de/cl/metaprog/

26

1 1 ——
Christoph Herrmann, University of Passau Talk at IFIP WG 2.11 Meeting, Dagstuhl, January 2006

